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Sufficient stability conditions for a motion on a finite time interval in Lebedev's
setting [1 — 3] are investigated, It is shown that for stability in the setting giv-
en it is sufficient that the matrix P (t) of the linear part of the equations of
perturbed motion have at the initial instant 2, at least one eigenvalue with

a negative real part, independently of the other eigenvalues of matrix P (o),
of the matrix P(t) — P (t,), and of the vector of constantly-acting perturbations,
under the single condition that the components of this vector be bounded in
modulus by sufficiently small positive quantities, )

Lebedev [1 — 3] proposed the following statement of the stability problem for mot-
ion on a finite interval, Let the perturbed motion of some dynamic system be describ-
ed by a differential equation system in the matrix form

dz/dt = P (§z + h (t, z) — g (¢, 2) (1)

where z is a column matrix of deviations (perturbations)z;, Z,, . . ., zn; P (8), k (2, 2)
and g (¢, z) are matrices of dimensions n X n, n X1 and n X1 respectively,be-
ing continuous and real functions of their arguments in the domain

'St Ty 5| <o (TyE Ty, 00)
In addition, h (¢, z) = 0 (z), while the vector~-valued function ¢ (¢, z) with compon-
ents £ (% %), .. ., gu{l, 7) characterizing the unknown perturbing forces, does not nec-
essarily vanish for all z; equalling zero. It is assumed that to the unperturbed motion
whose stability is being investigated there corresponds a zero solution z =0 of the
equation dz/dt = P () z + h (¢, z) . (2
obtained from Eq, (1) by dropping function ¢ (¢, z).

Definition [1-— 3], The unperturbed motion determined by the trivial
solution of Eq. (2) is said to be stable on the finite interval [t,, ¢, 4 T] under constant-
ly~acting perturbations if for every positive number ¢, however small, there exist a
positive number n (¢) and a cycle V (¢, 2) = ¢* such that on this interval the dia-
meter D (1) of the domain

Vitaz<c (3
does not exceed the initial diameter D (t,) and every solution z (f) of Eq, (1) with
an injtial condition =z, = =z (t,) satisfying the condition V (g, 7o) < ¢* satisfies in-
equality (3) under any perturbing forces g; (t,z) satisfying the condition

et 2) I <m(o)
in domain (3) for ¢, <t <<ty + 7
As applied to the system of differential equations of perturbed motion in the absence
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of perturbing forces,the stability definition in the setting given was presented by
Kamenkov and Lebedev in [4], In [2] Lebedev indicated sufficient conditions for the
existence of a stability interval in the linear approximation: for this it is sufficient that
all roots of the characteristic equation det {P (t,) — AE] = 0 have negative real parts,
However, the stability conditions in the setting being examined are considerably broad-
er. As Rudakov (5] showed, if even one element on the main diagonal of matrix P (t,)
is negative, then a nonzero interval [¢,, ¢, - v] exists on which the unperturbed mot-
ion is stable independently of the other element of matrix. P (,) of the matrix P (1)
— P (ty), and of the vector g (1, z). Let us show that for stability on a finite interval,
in Lebedev's setting, it is sufficient that there exist at least one eigenvalue of matrix
P (ts) with a negative real part, independently of the other eigenvalues of this mat-
rix, as well as indepeadently of the matrix P (f) — P (2y) and the vector g (z. x).
Theorem. Ifatleast one of the eigenvalues of matrix P (t) has a negative
real part, then a noazero interval (#,, ty -+ t] exists on which the unperturbed motion
(the frivial solution of Eq, {2) ) is stable ( in the sense of Lebedev's definition) indepen-
deatly of the other eigenvalues of matrix P (t,) , of the matrix P (1) — P (t,), and of
the vector g (¢, 2).
Proof, Let A, be an eigenvalue of matrix P '(t,) = P, and let Red, = — a
(a > 0). We denote the eigenvector of matrix Py, corresponding to this eigenvalue,
by K;. The eigenvector K; generates a one-dimensional invariant subspace R,
of the n -dimensional Euclidean space R™ over the complex number field, In the
(n —1)=dimensional invariant subspace R, of space R", orthogonal to vector K,
we select some system of mutually orthogonal vectors X, Ky, . . ., Kp, i.e., such that
(the asterisk denotes the Hermitian conjugate of the matrix)
K*K; =0 (i,j=2,...,n
We take it thatall the vectors K; (f = 1,2,...,n) have been normed, so that | X;i |
= VY Kj*K;j = 1. Under these conditions K,, K,, ..., Kn form a orthonormalized
system and K = (K,, K,, ..., Kn) is a unitary matrix.
We define the domain of admissible states by means of the positive-definite Hermitian

form
V¢, o) = (Ky™ ()=, Ky (D))
Ko (t) = KQ (1), Q(2) = diag (1, & () En~1)

where E,-, isthe unit matrix of order n —1 and e{t) issome differentiable fun~
ction bounded from below by a positive constant, The matrix of Hermitian  form
V{t, 2) is.
A () = (K)* K= KQ2 (5 K 0

Let Yqin (f) be the smallest eigenvalue of matrix A (f) at each instant ¢ . Then,

as is well known, the diameter of the domain
Vi, za)=z*d{Hz B &
is determined by the formula
Dty = D (%) ¥ Vinin (80} / Vipin (1) (6)

From (4) and (6) we see thatif g (#) <1 on the interval [¢, t; 4 7} , then domain
(5) preserves its diameter unchanged on this interval, i.e., D () = D (t,) (=Tt
ty + ).

We now compute the derivative of V (t, ) with respect to ¢ relative to Eq. (1)




Statement of a stability problem 137

dv ) o dA
G = (PRA AP ) 4 S, S S
Sp=z% (AP*4 4 AAP)z (AP = P (t) — Py)
Sp = x*4Ah ~+ h*4z, Sp= z*Adg 4 g*Az
Bearing (4) in mind and allowing for
KPR = dias O, Ap-y), K*PK = diaz (la, AL_)
where Ap-; isan( n — {1 )st-order matrix whose spectrum coincides with that of
matrix Po without eigenvalue A,, after the change of variables

z = Koy» yl == (yly'ﬁ:‘l)
we have

e e ) T F . . ne
T = 2Rek [ n P (A + AN — 275 By ) oy Spt S, S
Here
Sp = y* [Q (KIAPK)*Q™1 + Q-1K-1APKQ]y
Sp = y*QIK*h + h*KQ™ly, Sg= y*Q1K*g-} g*KQ 1y
Let Ap,, be the largest eigenvalue of the Hermitian matrix 2 (A, + An_)-
Then
dv dlne
r <2Rehy |93 P+ 2 (hypay — ) 19ny B+ S, + 5, + S,

We impose the conditions
Apag — @Ine (@/dt= —a, e <a<t, tlth I'>t)
on function ¢ (t) . These conditions are satisfied, for example, by the function
e)=aexpl— Ay +2 (I —8] Gl T)
With such a choice of € (1)
avidt < — 20|y |® + Sp+ Sy + Sg
Since Sp li=t, = 0s by continuity we have
Sp [vmer S Yz ac?

for any sufficiently small ¢ , within some finite interval lfo: 2o + T C l%4, 71 For
any sufficiently small number ¢ the inequality

Sy =t S ac?,  te [ty ty+ T]
is fulfilled because A (¢, z) = 0 (z) . Finally, forany ¢ we can find a sufficiently
small number 7 {¢} such that
Sg h’:c’ < Y ac?
under the condition |g; (t, ) | < 7 (¢). By virtue of the above
dV/dt ,\'=_.cz <\< — 2 < 1]

for any sufficiently small ¢ and n (c), and, hence, on the interval [to, to - 7] all the
integral curves of system (1), intersecting the surface V (1, z) = ¢*, intersect it from
the outside in. Thus, all the conditions of the stability definitions have been met,
The theorem is proved.

Practically all real systems satisfy the hypotheses of the theorem proved, and, there-
fore, all of them (with infrequent exception) are stable in the sense of Lebedev's defin-
ition,
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